首页> 外文OA文献 >Multilevel Sparse Grid Methods for Elliptic Partial Differential Equations with Random Coefficients
【2h】

Multilevel Sparse Grid Methods for Elliptic Partial Differential Equations with Random Coefficients

机译:椭圆偏微分方程的多级稀疏网格方法   随机系数方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic sampling methods are arguably the most direct and least intrusivemeans of incorporating parametric uncertainty into numerical simulations ofpartial differential equations with random inputs. However, to achieve anoverall error that is within a desired tolerance, a large number of samplesimulations may be required (to control the sampling error), each of which mayneed to be run at high levels of spatial fidelity (to control the spatialerror). Multilevel sampling methods aim to achieve the same accuracy astraditional sampling methods, but at a reduced computational cost, through theuse of a hierarchy of spatial discretization models. Multilevel algorithmscoordinate the number of samples needed at each discretization level byminimizing the computational cost, subject to a given error tolerance. They canbe applied to a variety of sampling schemes, exploit nesting when available,can be implemented in parallel and can be used to inform adaptive spatialrefinement strategies. We extend the multilevel sampling algorithm to sparsegrid stochastic collocation methods, discuss its numerical implementation anddemonstrate its efficiency both theoretically and by means of numericalexamples.
机译:随机抽样方法可以说是将参数不确定性纳入具有随机输入的偏微分方程数值模拟中的最直接,侵入性最小的方法。然而,为了获得在期望公差内的总体误差,可能需要大量的采样模拟(以控制采样误差),每个采样模拟可能需要在高水平的空间保真度下运行(以控制空间误差)。多级采样方法旨在通过使用空间离散化模型的层次结构来实现相同精度的传统采样方法,但以降低的计算成本。多级算法在给定的误差容限下,通过最小化计算成本来协调每个离散化级别所需的样本数量。它们可以应用于各种采样方案,在可用时利用嵌套,可以并行实现,并且可以用于告知自适应空间优化策略。我们将多级采样算法扩展到稀疏随机配置方法,讨论了其数值实现,并从理论上和通过数值例子证明了其效率。

著录项

  • 作者

    van Wyk, Hans-Werner;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号